Multiclass Adaboost Based on an Ensemble of Binary AdaBoosts
نویسندگان
چکیده
This paper presents a mult i-class AdaBoost based on incorporating an ensemble of binary AdaBoosts which is organized as Binary Decision Tree (BDT). It is proved that binary AdaBoost is ext remely successful in producing accurate classification but it does not perform very well for multi-class problems. To avoid this performance degradation, the multi-class problem is div ided into a number of binary problems and binaryAdaBoost classifiers are invoked to solve these classification problems. This approach is tested with a dataset consisting of 6500 b inary images of traffic signs. Haar-like features of these images are computed and the multi-class AdaBoost classifier is invoked to classify them. A classification rate of 96.7% and 95.7% is achieved for the traffic sign boarders and pictograms, respectively. The proposed approach is also evaluated using a number of standard datasets such as Iris, Wine, Yeast, etc. The performance of the proposed BDT classifier is quite high as compared with the state of the art and it converges very fast to a solution which indicates it as a reliableclassifier.
منابع مشابه
S Tudents ’ P Erformance P Rediction S Ystem Using M Ulti a Gent Data M Ining T Echnique
A high prediction accuracy of the students’ performance is more helpful to identify the low performance students at the beginning of the learning process. Data mining is used to attain this objective. Data mining techniques are used to discover models or patterns of data, and it is much helpful in the decision-making. Boosting technique is the most popular techniques for constructing ensembles ...
متن کاملSemantic Place Labeling Using a Probabilistic Decision List of AdaBoost Classifiers
The success of mobile robots relies on the ability to extract from the environment additional information beyond simple spatial relations. In particular, mobile robots need to have semantic information about the entities in the environment such as the type or the name of places or objects. This work addresses the problem of classifying places (room, corridor or doorway) using mobile robots equi...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملReducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a margin-based binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class is compared against all others, or in which all pairs of classes are compared to each other, or in w...
متن کاملBinary and Multi-class Classification of fused LIDAR-Imagery Data using an Ensemble Method
Airborne Light Detection and Ranging (LIDAR) data is used for multiple applications, such as urban planning, emergency response, flood control, and city 3D reconstruction. The LIDAR data in its raw form needs to be classified for the above applications. There are two types of classifications: binary and multi-class. In the binary classification, the given LIDAR data is classified into two class...
متن کامل